

Reducing *Legionella* Risk in Your Buildings

March 29, 2017

Speakers

Ray Petrisek, Director of Environmental Microbiology

HP Environmental
An AIHA accredited Environmental
Microbiology laboratory

Dan Broder, PhD Lead Scientist, Legiolert R&D Team

IDEXX
Global provider of water microbiology testing solutions.

Agenda

Legionella and the Industrial Hygienist (Ray)

Legionella Basics (Dan)

Tools for Reducing the Risk of Legionnaires' disease

- Water Management Plans (Ray)
- Routine Monitoring (Dan)

Questions (Ray and Dan)

Where is the hazard?

"In the United States, Legionnaires' disease has proven to be the most lethal building-related illness associated with water-borne bacteria."

"The New Age of *Legionella*" The Synergist, July 2015

The Industrial Hygiene approach

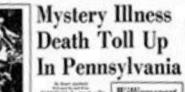
Anticipation
Recognition
Evaluation
Control

of workplace and environmental hazards, including *Legionella*

What is Legionella?

Cyclesister Par UTLOOK

Columnists / Editorials

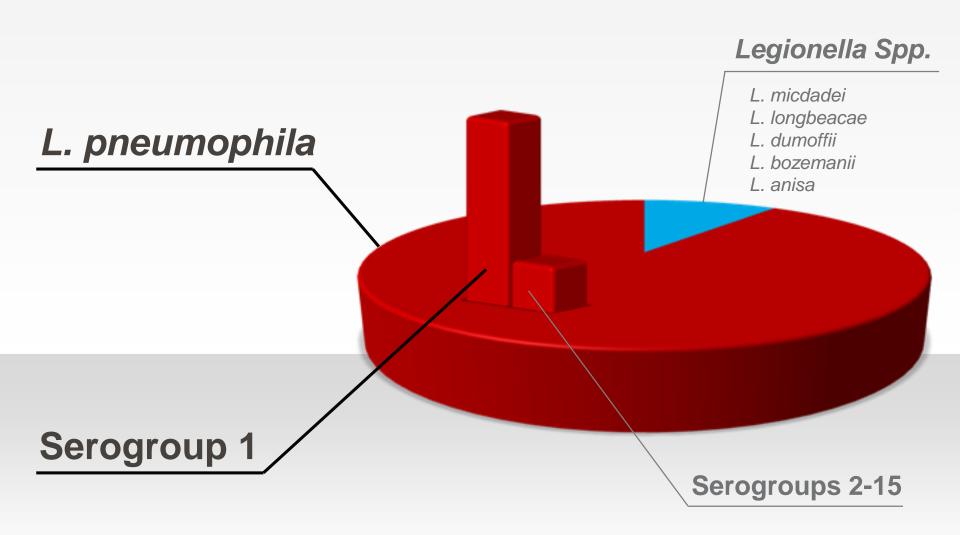


per former and form that the former and the second from the party property.

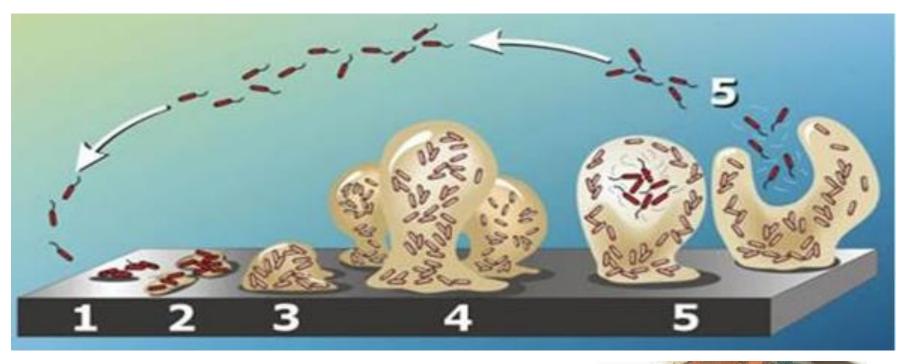

The Washington Post

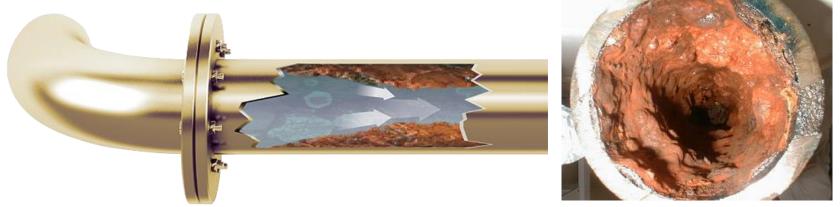
Clean Air Provision Endorsed

Sessete Sterke Politories Carl the Industry



Williamsport Uneasy Over An Epidemic





Legionella Species

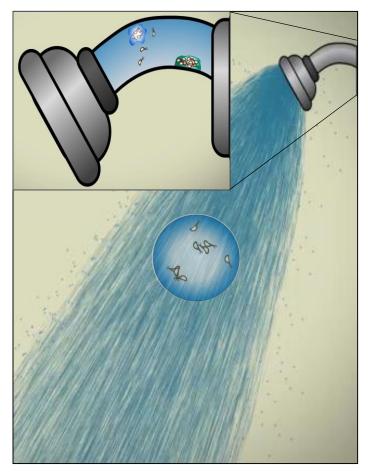
Biofilm – stable structures and breeding grounds

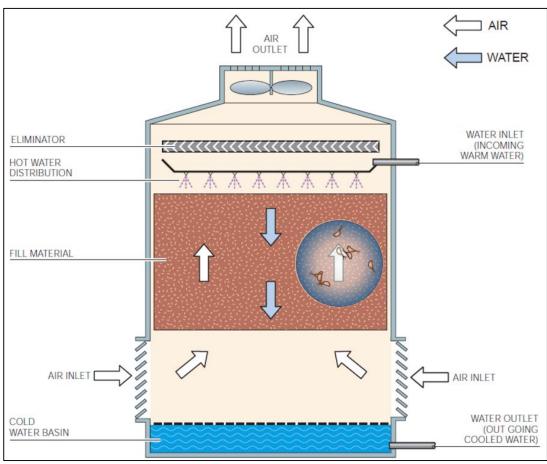
Where does Legionella live?

Potable Water

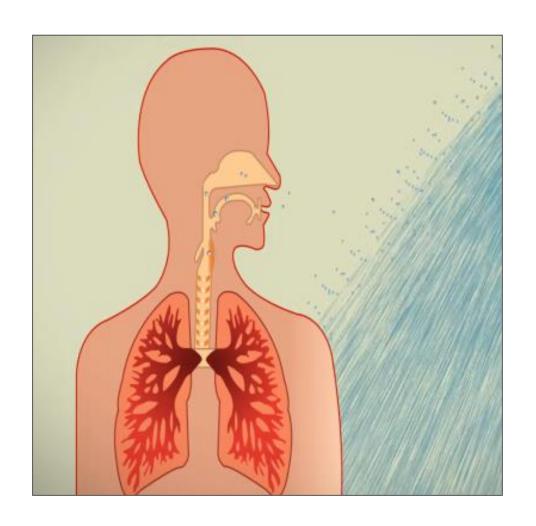
Where does Legionella live?

Nonpotable Water





Infectivity - Legionella are aerolized



Shower aerosol

Cooling tower aerosol

Infectivity – Infected water droplets are aspirated into the lungs.

Risk Groups

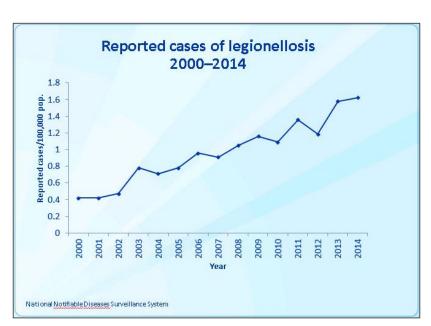
Chronic Lung Disease

Smokers

Immunocompromised

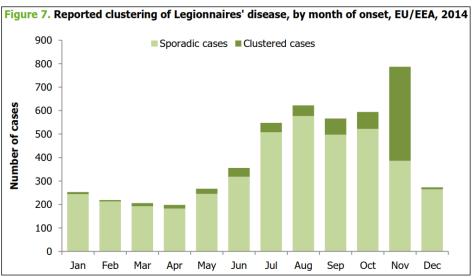
> 50 years

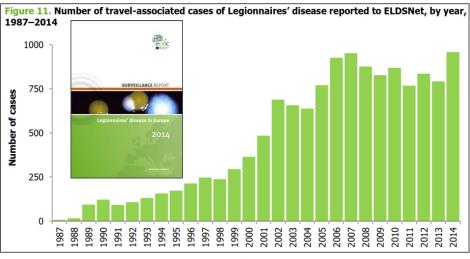
Risk Factors


Extent of Exposure

Virulence of Strain

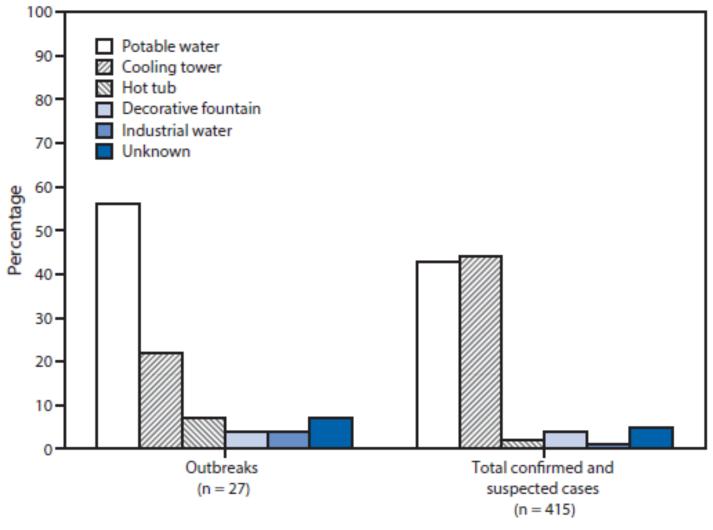
Susceptibility of Patient


Why should you be concerned with Legionella?


- The # of cases of legionellosis have increased 286% over the past 14 years
- 8,000 to 18,000 people contract legionellosis in the U.S. each year (estimated)
- 5-15% of the known cases of legionellosis are fatal

http://www.cdc.gov/legionella/surv-reporting.html

"During 2000–2014, passive surveillance for legionellosis in the United States demonstrated a 286% increase in reported cases per 100,000 population"



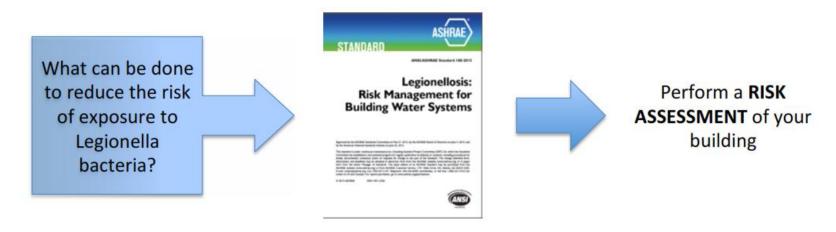
Significant Legionella Outbreaks 2000 – 2016, N. America

Year	Month	TYPE	CITY	STATE	CAUSE	CASES	DEATHS
2005	April	Hospital	New York	NY	Distrib. Syst.	4	2
2006	June	Hospital	San Antonio	TX	Distrib. Syst.	10	2
2006	February	Hotel	Daytona	FL	Distrib. Syst.	3	1
2007	September	Long-term Care	Roslyn Heights	NY	Unknown	5	3
2007	July	Hospital	Grand Rapids	MI	Distrib. Syst.	1	1
2008	September	Hospital	New Brunswick	NJ	Distrib. Syst.	8	3
2008	March	Hospital	Rochester	NY	Distrib. Syst.	3	1
2008	June	Community	Syracuse	NY	Distrib. Syst.	13	1
2009	October	Long-term Care	Baltimore	MD	Unknown	7	1
2009	November	Long-term Care	Vernon Hill	IL	Unknown	4	2
2009	July	Hospital	Utica	NY	Unknown	3	2
2009	December	Hotel	Miami	FL	Unknown	3	1
2010	May	Hospital	Des Moines	IA	Distrib. Syst.	2	1
2010	January	Long-term Care	Kingston	NY	Unknown	2	1
2011	September	Longterm Care	Turtle Creek	PA	Distrib. Syst.	8	1
2011	September	Longterm Care	Turtle Creek	PA	Distrib. Syst.	3	1
2011	October	Long-term Care	Plant City	FL	Unknown	3	1
2011	November	Long-term Care	Ellicott City	MD	Unknown	1	1
2011	March	Hospital	Dayton	OH	Unknown	10	1
2011	April	Hospital	Spokane	WA	Distrib. Syst.	3	1
2012	January	Hotel	Las Vegas	NV	Unknown	3	1
2012	August	Hotel	Quebec City	CA	Cooling tower	180	13
2012	November	Hospital	Pittsburgh	PA	Distrib. Syst.	16	5
2013	October	Hospital	South Whitehall Township	PA	Unknown	6	1
2013	July	Longterm Care	Reynoldsburg	OH	Distrib. Syst.	35	4
2014	June	HALD and Community	Genesee County	MI	Flint water system	91	12
2014	May	Hospital	Birmingham	AL	Distrib. Syst.	8	2
2014	May	Hospital	Pittsburgh	PA	Ice Machine	3	1
2014	February	Hospital	Indianapolis	IN	Unknown	2	2
2015	November	Community Acquired	Hannibal	MO	Not determined	3	1
2015	October	Healthcare	Syracuse	NY	Building water system	3	1
2015	August	Community	South Bronx	NY	Cooling Tower	127	12
2015	July	Rehab Center	Chicago	IL	Not determined	1	1
2016	August	Healthcare	Seattle	WA	Not confirmed	4	2

Outbreaks: potable vs. nonpotable water

Outbreaks and cases

https://www.cdc.gov/mmwr/volumes/65/wr/mm6522e1.htm


Legionella is ubiquitous, but it can be managed

Up to 70% of all building water systems are contaminated with Legionella

Both utility (i.e., cooling towers, air conditioning systems, etc.) and potable waters are potential sources of *Legionella* contamination

Building owners & managers are potentially liable and may incur considerable financial penalties

Legionellosis is a growing public health issue that is preventable

9 in 10

CDC investigations show almost all outbreaks were caused by problems preventable with more effective water management.

Regulatory: ASHRAE Standard 188-2015

STANDARD

ASHRAE

ANSI/ASHRAE Standard 188-2015

Legionellosis: Risk Management for Building Water Systems

Approved by the ASHRAE Standards Committee on May 27, 2015; by the ASHRAE Board of Directors on June 4, 2015; and by the American National Standards Institute on June 26, 2015.

This Standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addends or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the Standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE website (www.ashrae.org) or in paper form from the Senior Manager of Standards. The latest edition of an ASHRAE standard may be purchased from the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tulle Circle, NE, Atlanta, GA 30329-2305. E-mai: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org)permissions.

© 2015 ASHRAE ISSN 1041-2336

Recommended Water Safety Plan

First NA Standard for Legionella

Annex C is Specific to Testing

Tools: CDC Legionella Toolkit

Yes/No Worksheet to examine risky building areas

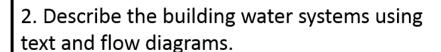
Walk through of *Legionella* mgmt. program

Example problem scenarios

Healthcare-specific guidance

The Industrial Hygiene Approach

"Proactive efforts to recognize and evaluate Legionella hazards and strives to prevent disease through


- source identification
- risk assessment
- control"

Guidance on the recognition. evaluation, and control of Legionella colonization and amplification in common building water systems Recognition, Evaluation, and Control of Legionella in Building Water Systems Edited by William Kerbel, J. David Krause, Brian G. Shelton, and John P. Springston

Water Management/Risk Management Plans

1. Establish a water management program team

3. Identify areas where Legionella could grow and spread.

4. Decide where control measures should be applied and how to monitor them

5. Establish ways to intervene when control limits are not met.

6. Make sure the program is running as designed and is effective

7. Document and communicate all the activities

Continuous program review

Verification of activities

Validation by testing

Developing a Legionella Risk Management Plan

PLAN DEVELOPMENT

HPE sends out Questionnaire & Water Systems Inventory

Documentation (questionnaire, inventory, process flow diagram) returned to HPE for review

HPE schedules site visit with OM to inspect building

HPE performs risk assessment & prepares draft RMP

RMP sent to team members for comment/review

HPE revises plan (as needed) & issues to management for implementation

PLAN IMPLEMENTATION

Education

- 1. Initiation of the Plan
- 2. New employees & vendors
- 3. Refresher every 2 years

Engineers perform RMP Steps

- 1. Inspection/Monitoring
- 2. System Maintenance
- 3. Chemical Treatment
- 4. Testing (validation)

Engineers survey building to ensure compliance with RMP (annually)

Team members schedule conference call (annually) to discuss plan implementation, evaluate building risk factors, CCPs, CMs, scientific findings & new technologies

HPE revises/updates RMP

PROGRAM REVIEW

Comprehensive Program Review (every 2 years)

Risk Assessment Review

- 1. Changes to the water system or its use
- Changes in the utilization of the building
- Availability of new info about risks, CCPs & control measures
- 4. Results of checks indicate that CMs are not effective
- 5. A case of Legionellosis is linked to the building
- 6. Changes in key personnel

RMP Revised/Updated (as needed)

Plan Example:

Includes Scope of Services, Risk characterization, team members, building water system description, water source information

Legionella Risk Management Plan For Building Water Systems

ACME Property Group 1234 Crystal Drive (ACME Park 3) Arlington, Virginia 55555

December 24, 2015

Number of Buildings	1
Construction Date	1986
Building Type	Commercial
Total Number of Floors	15
Above grade	12
Below grade	3
Total square footage of the building	400,000 ft ²
Total # of Cooling Towers (location)	4 (penthouse)

Table of Contents

1. 5	Scope	8.	risk	chai	racte	rizati	on
------	-------	----	------	------	-------	--------	----

2. Members of the team

3. Description of the building's water systems

4. Hazard analysis summary

5. Process flow diagrams

6. Determination of critical control points (CCPs)

7. Inspection, maintenance & testing procedures

Appendices: A. Water Systems Inventory

B. Plan Ouestionnaire

References: ANSI/ASHRAE Standard 188-2015

VNO/CES Operations Manual, Legionella

Risk Management (ENV-F) VNO/CES Operations Manual,

Preventive Maintenance (ENG-C.06)

Scope of Services

The scope of services performed by HP Environmental, Inc. (HPE) was to provide consulting services to assist in the development of a risk management plan for the control of Legionella in building water systems at 1234 Crystal Drive (ACME Park 3), in Arlington, Virginia. This plan does not address resident installed water systems (domestic/utility water) that are, by design, not the responsibility of ACME Property Group.

Risk Characterization

Building has one or more SYSTEMS that may relate to legionellosis:

 Open- & closed-circuit cooling towers or evaporative condensers that provide cooling and/or refrigeration for the HVAC&R system or other systems or devices in the building; Building has one or more FACTORS that relate to legionellosis:

It is more then 10 stories high (including any levels that are below grade)

Disclaimer Statement

HPE has used its best efforts in preparing this risk management plan and makes no warranty of any kind, expressed or implied, nor assumes any legal liability or responsibility for any 3rd party's use, with regard to the content, quality, performance, transmission or any other aspect of the information contained herein. The information provided herein is based on a general walkthrough performed by HPE and an evaluation of information provided by ACME Property Group on the Water Systems Inventory and the Plan Questionnaire. The Plan is designed to control the risk of Legionella and no other pathogens. HPE shall not be liable for any damages, including consequential damages, in connection with, or arising in any manner related to information offered herein. The mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Prepared by:

HP ENVIRONMENTAL INCORPORATED 104 Elden Street Herndon, VA P: (703) 471-4200 F: (703) 471-0020

MEMBERS OF THE TEAM

Engineering Supervisor	Engineering Supervisor	Operations Manager
TBD	TBD	TBD
Assistant Director of Engineering	Quality Control Manager	Senior VP of Engineering Services
TBD	TBD	TBD
Microbiologist Consultant	Environmental Consultant	Building Consultant
Ray Petrisek, MS, ASCP(MT), SM, HEM HP Environmental, Inc. 104 Elden Street, Herndon, VA (703) 471-4200 rpetrisek@hpenviron.com	Jonathon Hall, MPH, CIH HP Environmental, Inc. 104 Elden Street, Herndon, VA (703) 471-4200 jhall@hpenviron.com	Building Consultant William Kilpatrick, PhD, MEng, PE, LEED AP ID+C HP Environmental, Inc. 104 Elden Street, Herndon, VA (703) 471-4200 wkilpatrick@hpenviron.com

DESCRIPTION OF THE BUILDING'S WATER SYSTEMS

System	Water System	# of Systems	Location/POE
Fire Protection Systems (FPS)	Utility	3 (1 wet, 2 dry)	G1 Level & Loading Dock
Cooling Towers (CT)	Utility	4	Penthouse
Boilers	Utility	2	Penthouse
Chillers	Utility	3	G1 Level
Swimming Pools	Utility	None	-
Potable Water Main Taps (PWMTs)	Potable	1	West side of building
Points of Entry (POE)	Potable	1	West side of building
Domestic Hot Water Systems (DHWs)	Potable	2	Penthouse
Bottled Water Dispensers	Potable	None	-
Supplemental Filters	Potable	Various	Ice & coffee machines, hot & cold water dispensers

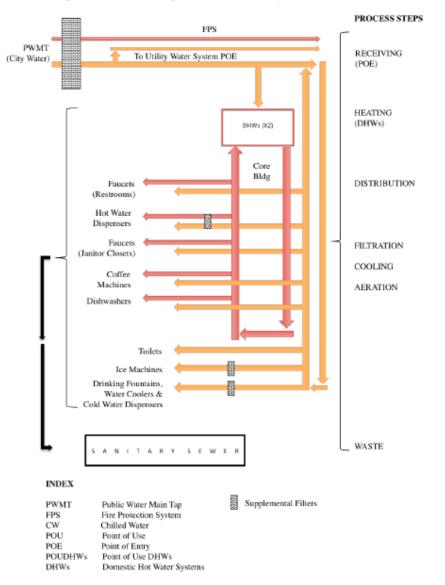
Points of use (POU) domestic water systems identified at the building include:

 Coffee machines 	 Faucets in employee areas 	 Drinking fountains
 Refrigerator icemaker 	 Faucets in public restrooms 	 Hot & cold water dispensers
 Dishwashers 	 Faucets in other areas 	Water coolers
 Faucets in janitor's closets 	 Ice machines 	 Toilets

Where does the Building's water come from and how is it treated?

Source Potomac River

Treatment Plant
Disinfection Process
Additional Information
Dalecarlia Water Treatment Plant
Chloramine / Chlorine
http://water.arlingtonva.us/water/


Legionella Risk Management Plan for Building Water Systems 1234 Crystal Drive, Arlington, VA

Process Flow Diagram

- Promotes a complete assessment of risk
- Illustrates the most appropriate sampling points

Figure 2. Process Flow Diagram for Potable Water Systems at ACME Park 3

Hazard Analysis

Potential for harboring and/or transmitting *Legionella* bacteria if not properly maintained.

Table 1. Hazard Analysis for Water Systems identified at ACME Park 3

System/ Device	Significant Legionella Risk (Y/N)	CCP (Y/N)	Reasoning
СТ	Υ	γ	Potential for Legionella growth and exposure.
DHW (central)	Y	γ	Legionella growth in DHWs will affect exposure at POUs.
POU	Y	γ	Contamination of piping & plumbing systems (e.g., dead legs, aerators faucets, showers, standard mixing valves, thermostatic mixing valves, electronic faucets, etc.) will affect exposure to Legionella at the POU. Control measures are not necessary at some POU devices (e.g., toilets; dishwashers) because exposure to Legionella is low.
POUFLTR	Y	γ	Legionella can grow on filters and can be released into water, potentially contaminating other parts of the domestic water system and affecting exposure at POUs.

Critical Control Point Identification

Risk Severity

Potential Controls

Control Point

ССР	Severity/Basis for Risk Characterization	What controls could be applied to eliminate, reduce or prevent the Legionella hazard from causing harm?
СТ	Moderate to high risk; poorly maintained CTs can and are known to harbor Legionella & provide transmission to cause disease	Develop a water treatment program Maintain & monitor chemical applications to reduce biofilm Perform regular maintenance (clean system, maintain & clean UV and/or supplemental filtration) Perform semi-annual Legionella testing (May - Oct)
DHW	Medium risk; Poorly maintained DHWs can harbor Legionella	 Flush system regularly to remove the build up of sediment & remove any accumulated biofilm Chlorinate system if level is below 0.5 ppm for > 1 month
POU	Medium risk; Contamination of plumbing systems will affect exposure to Legionella at the POU.	Check aerators for sediment and/or biofilm twice/year Replace/clean aerators as needed or at time of turnover Use laminar flow aerators Maintain POU hot water temperature at 110 - 120°F Check & verify mixing valve operation Ozone application Copper/silver drip ionization system
POUFLTR	Medium risk; Poorly maintained filters can harbor Legionella & can contaminate other parts of the DWS & exposure at POU,	Check filters for sediment and/or biofilm Replace filters or clean, as needed

Control Measure Examples

Inspection, maintenance & corrective action

Process/ Device	Keyword	Control Measure	Frequency (Inspection, Maintenance or Testing)	Notes	Establish frequency
Backflow Preventers	N/A	Inspect working condition; install where needed & repair, as needed	Annually	11	
Check Valves	N/A	Inspect condition regularly; remove debris & drain as needed; thoroughly clean & disinfect all surfaces	Annually	97	
Dead legs, abandoned piping	N/A	Remove piping & fixtures no longe used or flush often to minimize stagnation; Cut or valve off where pipe joins main, or at the last accessible point of flow	inspection & maintenance of vacant space plumbing lines)	38 54 55	Remove Dead Legs
Drinking Fountains	Aerators	Flush system & disinfect aerator	Biannually	78	
Eyewash Stations	Aerators	Flush piped eyewash stations per ANSI or OSHA requirements; repeat if requirements not met	Biannually	12	Fluch and Claan
Faucets	Aerators	Run hot & cold water faucets; replace or clean aerators as needed or at time of tenant turnover	Biannually	31	Flush and Clean
Filters	Ice & coffee machines, hot & cold water	Inspect condition regularly; check filters for sediment and/or biofilm & replace/clean, as needed	Biannually (increase frequency of maintenance if filter is heavily loaded w/	14 26	
Ice Machines	dispensers N/A	Inspect condition of supply line filters & replace, as per manufacturers recs; clean & disinfect the machine regularly	sediment/biofilm) Biannually	15 83	Inspect, Clean, Disinfect
Hose Reels/Bibs	Supply lines, aerators	Flush infrequently used hose bibs	Biannually	31	
	Head	Flush showerhead	Biannually	12	
Showers	Hose	Drain shower hoses or hang to drain without touching the floor when not in use	Flush hoses biannually	51	
I		Let III a III a	I	1	I

Environmental Testing

"Environmental monitoring that includes sampling for viable Legionella is essential to validate the effectiveness of control measures in eliminating or minimizing Legionella growth."

The AIHA *Legionella* Work Group of the AIHA Indoor Environmental Quality Committee Letter to the CDC, May, 2016

Testing for Legionella

"By implementing administrative, engineering and protective measures, based upon empirical measurement of the organism responsible for the disease in question, health risks to worker and building occupants can be reduced.

Proactive sampling and analysis for *Legionella* should be included as an integral part of any building water program."

- American Industrial Hygiene Association Comments on BSR/ASHRAE Standard 188P Legionellosis: Risk Management for Building Water Systems. (Nov, 2014)

Global Action limits – Guidance & Legislation Potable Water

Country	Entity	Type of rule	Potable water limit
	CDC	Guidance	Depends on Risk Mgmt Plan
	ASHRAE	Guidance	Depends on Risk Mgmt Plan
United States	AIHA	Guidance	≥ 10 cfu/mL
Officed States	OSHA	Guidance	≥ 10 cfu/mL
	VHA Directive 1061	Guidance	Any positive
	New York State Dept. of Health	Legislation	≥ 30% "positive" outlets (healthcare facilities only)
France	Ministry of Health	Legislation	≥ 1 cfu/mL
Germany	Trinkwasserverordnung TrinkwV 2001	Legislation	≥ 1 cfu/mL

Global Action Limits – Guidance & Legislation Nonpotable water

Country	Entity	Type of rule	Nonpotable water limit
	CDC	Guidance	Depends on Risk Mgmt Plan
	ASHRAE	Guidance	Depends on Risk Mgmt Plan
United States	AIHA	Guidance	≥ 100 cfu/mL
	OSHA	Guidance	≥ 100 cfu/mL
	New York State Dept. of Health	Legislation	≥ 10 cfu/mL
France	Ministry of Health	Legislation	≥ 1 cfu/mL
Germany	Trinkwasserverordnung TrinkwV 2001	Legislation	≥ 1 cfu/mL
Canada	Quebec	Legislation	≥ 10 cfu/mL

Actions from positive results: AIHA Guidelines

Table 3.2 — Recommended Actions

in 3.1.1 and 3.1.3.

Action Level	Recommended Actions
1	Continue monitoring as per the site specific plan based upon risk assessment results. Continue maintaining the system and source and consider reassessment if conditions change to favor Legionella colonization or amplification.
2	If no cases of Legionellosis (LD or PF) are suspected, reassess maintenance and treatment practices, implement remedial cleaning or disinfection protocols, and schedule for retesting. Based upon professional judgment and the history of the water source, consider increasing the frequency and/or intensity of sampling efforts in order to identify any contributing amplification source(s) or implement prophylactic cleaning or biocide treatment protocol. Re-examine secondary parameters (pH, residual disinfectant levels, temperature, etc.) to identify potential cause of elevated Legionella levels, and make any necessary adjustments. If one or more cases of Legionellosis (LD or PF) are suspected, notify appropriate management and public health authorities of test results and coordinate further efforts. Take immediate steps to prevent further exposure to occupants, workers and the public. Interim measures to restrict water use, filter the organism from the water, or prevent aerosolization can effectively prevent exposure until terminal measures are implemented. Coordinate and implement cleaning, and/or disinfection protocols with any proposed testing by public health officials. Continue water use restrictions and/or interim measures until post-treatment sample results are received from the laboratory and reviewed by a competent professional. If an amplification site is identified in the course of further investigation and implement measures to remediate the source and prevent its reoccurrence. Perform post-remediation testing to verify and document the effectiveness of remediation protocols (see 4.3 Section d) and implement follow up monitoring using a strategy based upon Routine Assessments as described in 3.1.1 and 3.1.3.
3	If no cases of legionellosis (LD or PF) are suspected, take immediate steps to prevent further exposure to occupants, workers and the public. Interim measures to restrict water use, filter the organism from the water, or prevent aerosolization can effectively prevent exposure until terminal measures are implemented. Implement cleaning, and/or disinfection protocols. Continue water use restrictions and/or interim measures until post-treatment sample results are received from the laboratory and reviewed by a competent professional. Reassess maintenance and treatment practices, implement remedial cleaning or disinfection protocols, and schedule for retesting. Re-examine secondary parameters (pH, residual disinfectant levels, temperature, etc.) to identify potential cause of elevated Legionella levels, and make any necessary adjustments. If one or more cases of Legionellosis (LD or PF) are suspected, notify appropriate management and public health authorities of test results and coordinate further efforts. Coordinate any cleaning and/or disinfection protocols with any proposed testing by public health officials. If an amplification site is identified in the course of further investigation, implement measures to remediate the source and prevent its reoccurrence. Perform post-remediation testing to verify and document the effectiveness of remediation protocols (see 4.3 Section d) and implement follow up monitoring using a strategy based upon Routine Assessments as described in 3.1.1 and 3.1.3.
1A	Verify water treatment operation and, if deemed necessary, increase biocide treatment levels. Review cleaning and scale control program to determine if it should be enhanced. Re-test until the Legionella levels are consistently below 10 CFU/mL.
2A	Disinfect and clean, as per recommendations described in the Cooling Technology Institute Legionellosis Guideline: Best Practices for Control of Legionella WTB-148 (o8) within 30 days. Review cleaning and scale control program to determine if it should be enhanced. Re-test until the Legionella levels are consistently below 10 CFU/mL. If an amplification site is identified in the course of further investigation, implement measures to remediate the source and prevent its reoccurrence. Perform post-remediation testing to verify and document the effectiveness of remediation protocols (see 4.3) and implement follow up monitoring using a strategy based upon Routine Evaluations as described

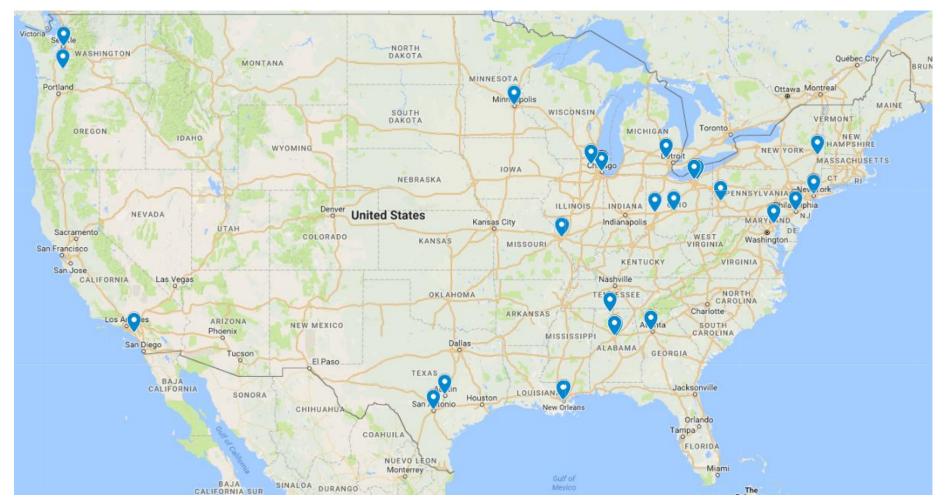
Range of Actions:

- Increase of biocides
- Cleaning and/or disinfection
- Water restrictions
- Notification of officials if suspected case of Legionellosis
- Remediation
- Post-Remediation testing

Regulations, Guidance, and Liability

Regulations = Less common, but on the rise

- Guidance = More common (ASHRAE, OSHA, etc.)
 - Conforming to guidance reduces risk and illness; when illness occurs there may be direct responsibility/liability
- Who is to blame? Who is liable?
 - Owner or operator of a public building (hospital, hotel, etc.)
 - Building engineers and maintenance personnel depending on the specific circumstances



The impact of liability

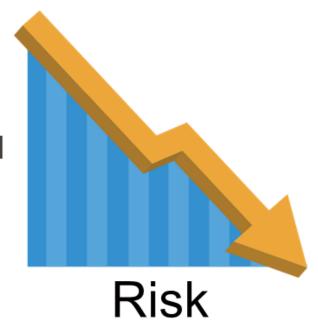
Legionnaires' Disease lawyers in the United States

Not a comprehensive list!

Litigation and costs

- ✓ People sue for getting Legionnaires' Disease
- ✓ Settlements, awards, and legal fees can be significant

Year	Source	Amount
2007	Hot tub/cruise ship	\$15.1 million
2010	Hot tubs/pools	\$490K
2010	Drinking water	\$1.2 million
2010	Hotel hot tub	\$4.5 million
2010	Hot tub	\$2.4 million
2014	Decorative fountain	\$2.3 million
2013	Not determined	\$3 million sought
2014	Hospital	\$228K



How do you reduce the health and legal risks?

There will be ramifications if there is an incident, so protect individuals and yourself:

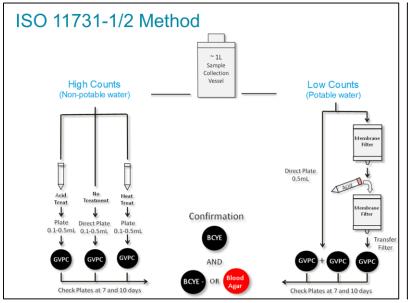
How?

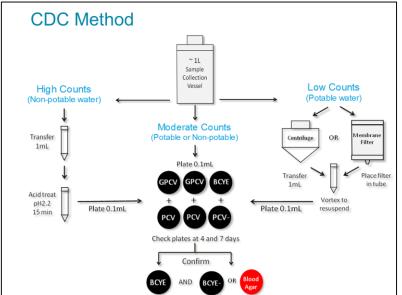
- Test regularly to confirm risk management practices are working properly
- Perform corrective actions if needed and retest to confirm actions have reduced the risk
- Keep records of your test results and corrective measures!

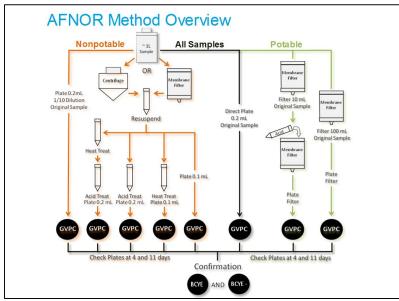
Testing for Legionella: What do most labs do?

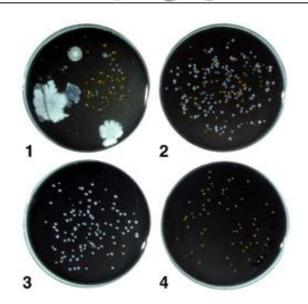
The Gold Standard = Culture

But which culture method? There are many!


Labs choose from many possible protocol options

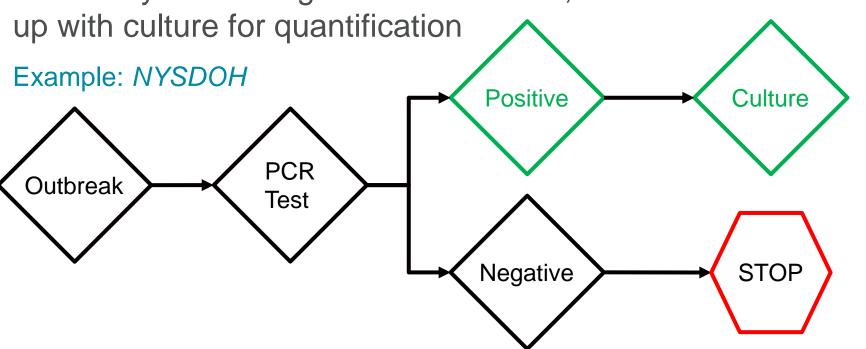

- 1. Concentration
 - Membrane filtration
 - Centrifugation
- 2. Pretreatments (to reduce the background)
 - Acid
 - Heat
- 3. Media formulas
 - GVPC, PVC, MWY, DGVP, CCVC, etc.
- 4. Follow up/ confirmation methods
 - Plate media
 - Serotype latex agglutination
 - Direct fluorescence antibody microscopy
 - Sequencing





Different methods = different results

What about other "rapid" tests?


Method	Fast?	Quantitative	Problems
Culture	No	Yes	Labor intensiveSubjectiveHigh variability from method variations and expertise
PCR	Yes	Sort of: Reports out in Genomic units which are not equivalent to CFU or MPN	 Cross reaction from matrix issues Live vs. dead can't be resolved
DFA	Yes	Not reproducibly	Live vs. dead can't be resolvedHigh degree of variabilityRequires concentration
Lateral flow antibody test	Yes	No	 Limited range of serotypes (Lp1 only) Not very sensitive High false negative rage
Antibody capture	Yes	Yes, but accuracy varies	Highly labor intensiveExpensiveHigh variability from method difficulty

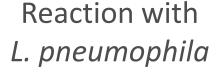
Do you need a same day test result?

No, not for routine monitoring – the key to a risk management plan is trending / outliers

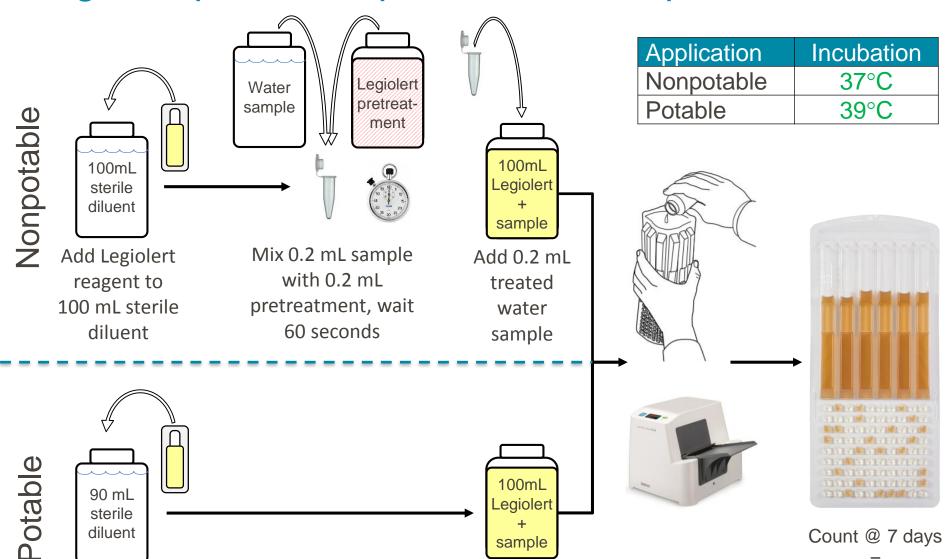
Same day tests are good for outbreaks, but are also followed

Legiolert[™], the next generation culture test Ideal for routine monitoring and compliance

- Detects all serogroups of Legionella pneumophila
- Highly specific, little background interference
- Simple to use, color reaction similar to Colilert[®]
- Reproducible and repeatable
- Can be used for potable and nonpotable matrices
 - Matrix-specific protocols
- Uses most probable number (MPN) to quantify, which is the same quantification as CFU
- Counts of up to 2,272 per test, much higher than petri plates
- Incubates for 7 days to yield a confirmed result


Legiolert platform

- Unique 100 mL "Quanti-Tray" device
 - 6 large wells (overflow)
 - 90 small wells (resolution)
 - Counts L. pneumophila; from 1-2272 MPN/ Quanti-Tray
- Blister pack reagent



Negative Sample

Legiolert protocols: potable and nonpotable water

Add 10

mL water

sample

Add Legiolert

reagent to

90 mL sterile

diluent

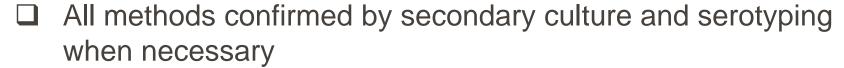
Pour into QuantiTray, seal, and

Confirmed result

incubate

Legiolert performance — ISO 13843 Method Validation

Validation of Legiolert


ISO/TR 13843:2000(E) Water Quality – Guidance on validation of microbiological methods

Metric	Value
Sensitivity	98%
Specificity	> 99%
False positive rate	< 0.01%
False negative rate	4.20%
Efficiency	> 99%
Repeatability	< 0.01
Reproducibility	< 0.01

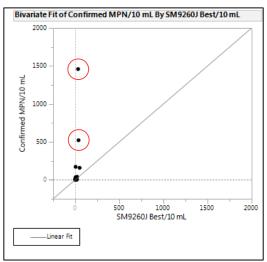


Legiolert Field Trials

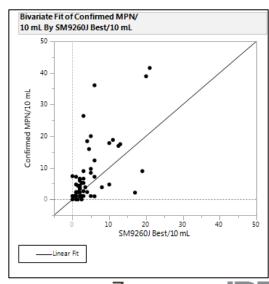
- Potable and nonpotable water
- Independent laboratories
- Regions
 - Germany
 - North America (U.S. and Quebec)

- Split samples analyses
 - Samples were obtained from sites/customers during routine business/laboratory operations in order to mimic performance in a real world scenario
- ☐ Data segregated for *L. pneumophila* by isolate speciation

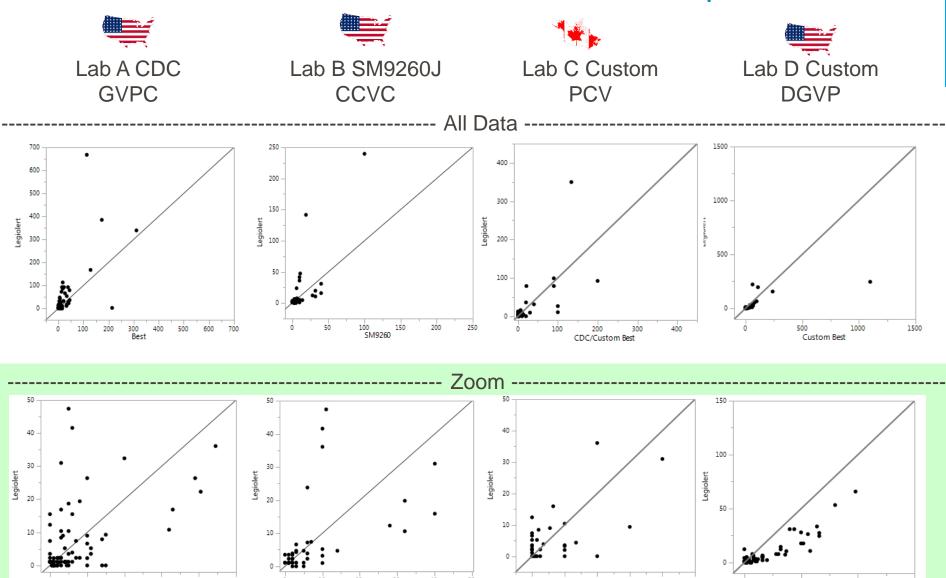
North American Beta Trial Evaluation – Potable Water


Legiolert vs. Standard Methods SM9260J: Detection of

Pathogenic Bacteria: Legionella


		vs. SM9260J:	
Statistical method	Statistic	Best	
T-Test	N	74	
	Prob > t	0.120	
	Prob > t	0.060	
	Prob < t	0.94	
Wilcoxon Signed Rank Test*	Prob > S	<.0001	
	Prob > S	<.0001	
	Prob < S	1	
p < 0.05 indicates a significant difference			
% False positive = 0%			
*Statistical method for non-parametric data			

Legiolert is equal to or more sensitive than standard methods for potable water



All Data

North American Beta Trial Evaluation – Nonpotable Water

CDC/Custom Best

North American Beta Trial Evaluation – Nonpotable Water Sensitivity statistics for all trial sites

Statistical method	Statistic	vs. CDC: Best	vs. SM9260J: Best	vs. CDC/AFNOR: Best	vs. Laboratory custom method Best
T-test	N	92	49	74	76
	Prob > t	0.076	0.201	0.326	0.130
	Prob > t	0.038	0.100	0.163	0.935
	Prob < t	0.962	0.899	0.837	0.065
Wilcoxon Signed Rank	Prob > S	0.258	0.728	0.924	<.0001
Test*	Prob > S	0.129	0.636	0.462	1.0000
	Prob < S	0.871	0.363	0.363	<.0001
p < 0.05 indicates a signif	icant differen	ce			
*Statistical method for nor	n-parametric	data			

Specificity: True/false positivity

Legiolert wells sampled	671
Legiolert wells confirmed as L. pneumophila	652
Cumulative false positivity rate	3.6%

My test results show there is *L. pneumophila* in the water. Is this really bad??

Not necessarily...

There are other factors besides presence/absence!

- 1. How much is there?
- 2. Is this a change from a previous test cycle?
 - Results from test to test <u>must be accurate</u> to know this!
- 3. Are many locations within the building positive?
 - For example, New York State Dept. of Health rules stipulate that action should be taken if ≥ 30% of outlets are positive above the minimum threshold

Legionnaires' Disease - final thoughts

Legionnaires' disease is preventable with a risk management plan Regulations and guidance/liability make it your responsibility to carry out that risk management plan **and make sure it's working** There are tools to help you!

Legiolert

- Accurate and consistent for Risk Management Plan assessment
- Detects L. pneumophila, the primary clinical and environmental disease agent
- Easy test means
 - More labs will offer this
 - Industrial hygienists and premise owners can react with the best information to protect the public as soon as Legionella pneumophila is found

Thank you

RAY PETRISEK

DIRECTOR OF ENVIRONMENTAL MICROBIOLOGY
HP ENVIRONMENTAL, AN AIHA ACCREDITED ENVIRONMENTAL MICROBIOLOGY
LABORATORY
rpetrisek@hpenviron.com

http://hpenviron.com/

DR. DAN BRODER, PHD

STAFF SCIENTIST, MICROBIOLOGIST IDEXX WATER R&D Daniel-Broder@idexx.com

https://www.idexx.com/water/water-testing-solutions.html

